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Abstract: Real-time bidding has emerged as an effective online 

advertising technique. With real-time bidding, advertisers can 

position ads per impression, enabling them to optimise ad 

campaigns by targeting specific audiences in real-time. This paper 

proposes a novel method for real-time bidding that combines deep 

learning and reinforcement learning techniques to enhance the 

efficiency and precision of the bidding process. In particular, the 

proposed method employs a deep neural network to predict auction 

details and market prices and a reinforcement learning algorithm 

to determine the optimal bid price. The model is trained using 

historical data from the iPinYou dataset and compared to cutting-

edge real-time bidding algorithms. The outcomes demonstrate that 

the proposed method is preferable regarding cost-effectiveness and 

precision. In addition, the study investigates the influence of 

various model parameters on the performance of the proposed 

algorithm. It offers insights into the efficacy of the combined deep 

learning and reinforcement learning approach for real-time 

bidding. This study contributes to advancing techniques and offers 

a promising direction for future research. 

Keywords: Real-time bidding, Display advertising, 

Reinforcement learning, Markov decision process, Deep 

landscape forecasting 

I. INTRODUCTION 

Real-time bidding (RTB) lets marketers bid on ad 

impressions in real-time. A demand-side platform collects 

and analyses user data from display advertising websites to 

identify the best ad to display. Reinforcement learning-based 

real-time display advertising bidding was proposed by Cai et 

al. [1]. Their deep Q-network model determined the optimal 

bidding price in real-time auctions, outperforming existing 

methods. Karlsson [2] studied programmatic advertising 

feedback control approaches to optimise real-time bidding. 

Control theory was applied to proposal shading, budget 

allocation, and inventory management, with pros and cons. 

Liu and Yu [3] presented bid-aware active learning for 

display advertising real-time bidding. Their strategy 

improved bidding efficiency and precision using active 

learning and proposal prediction models. The authors tested 

their technique using real-world datasets. 
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Display advertisements sell products, services, and brands 

online through images, videos, and graphics. Banner adverts, 

pop-ups, and sponsored content are common on websites, 

social media platforms, and mobile apps. Thompkins [4] 

reviews a decade of online advertising research and 

highlights key conclusions and areas for further investigation. 

Choi et al. [5] analyse online display advertising industry 

literature, including economic and strategic consequences, 

and suggest future research. Nuara et al. [6] present 

probabilistic modelling to optimise multi-channel advertising 

campaigns due to interdependencies and unpredictability. 

Optimising bids and budgets improve display advertising 

campaigns. CTR, conversions, and ROI rise. Optimisation 

can help businesses enhance their advertising campaigns by 

discovering the best ad creatives, audiences, and channels. 

Geng et al. [7] suggested an automated bidding and budget 

optimisation system for performance advertising campaigns 

that use bidding and budget allocation algorithms to optimise 

campaign performance. Avadhanula et al. [8] proposed a 

stochastic bandit framework for optimising multi-platform 

advertising budgets. The method dynamically allocates 

budgets to platforms based on performance and estimation 

uncertainty. Luzon et al. [9] suggested optimising and 

learning budget allocation for social media advertising 

campaigns. Machine learning predicts the ideal budget 

allocation for the next period based on prior performance and 

budget allocation. Lin et al. [10] proposed a budget-

constrained real-time bidding (BCRTB) optimisation 

algorithm that utilises multiple predictors to enhance 

performance.  

The iPinYou dataset is a publicly accessible dataset 

containing a vast quantity of real-world data from the Chinese 

market. The dataset includes billions of ad impressions, user 

profiles, and contextual factors such as website type and time 

of day. Zhang et al. [11] evaluated the performance of various 

real-time bidding algorithms using the iPinYou benchmark 

dataset, which is extensively utilised in online advertising 

research. The iPinYou Global RTB Bidding Algorithm 

Competition Dataset, which contains four months of bidding 

logs from the iPinYou advertising platform, was created by 

Liao et al. [12] to facilitate research on RTB algorithms. 

Huang et al. [13] proposed a novel click-through rate 

prediction model based on deep and cross networks; its 

performance on the iPinYou dataset was promising. 
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Deep Landscape Forecasting can predict an advertisement's 

efficacy across various landscapes, including distinct user 

segments, ad positions, and contexts. RTB algorithms can 

make superior decisions regarding ad placement, bid price, 

and budget allocation when utilising DLF. Ren et al. [14] 

propose a deep landscape forecasting method for real-time 

bidding advertising to estimate the number of ad impressions 

that can be served to each user within the bidding landscape. 

Würfel et al. [15] present an interpretable deep learning 

method for online advertising revenue forecasting, which 

predicts future advertising revenues based on historical 

performance data. Ghosh et al. [16] present a scalable bid 

landscape forecasting method for real-time bidding that 

addresses the difficulty of predicting the landscape of the 

forthcoming auction in real-time. 

The Markov Decision Process (MDP) is a mathematical 

framework for modelling decision-making problems with 

indeterminate action outcomes. It consists of states, actions 

that can be performed in each state, transition probabilities 

that specify the likelihood of transitioning from one state to 

another after acting, and rewards or costs associated with each 

transition. Du et al. [17] propose a constrained Markov 

decision process (CMDP) approach for enhancing real-time 

bidding, considering ad impression quality, budget 

constraints, and bidding strategy. Agrawal et al. [18] present 

a Markov decision model for administering display-

advertising campaigns that employ a dynamic pricing 

mechanism to calculate optimal bid amounts. Shanahan and 

den Poel [19] propose a Markov decision process approach to 

determine online advertisements' optimal frequency 

limitation policy to maximise click-through rates. Boutilier 

and Lu [20] propose a budget allocation method that employs 

weakly coupled, constrained Markov decision processes to 

optimise resource allocation across multiple contending 

projects. From the literature review done above, the following 

can be considered as the novelty of the present study: 

• Most prior works viewed bid optimisation as a static 

optimisation problem involving either treating the value 

of each impression independently or setting a bid price for 

each segment of ad volume. However, the tendering for a 

particular ad campaign would occur repeatedly before the 

budget is exhausted. Consequently, proposal optimisation 

occurs in a real-time setting. 

• Based on the novel modelling methodology, the present 

model can generate flexible forecasting auction results for 

each ad request without making any prior assumptions 

about the market price distribution, as demonstrated in the 

experiment. 

• Using a comprehensive loss function for censorship 

management and going beyond traditional survival 

analysis methodologies to model the market price 

distribution more accurately. 

II. PROBLEM DEFINITION  

We will use Markov decision process (MDP) to optimize the 

advertiser's total revenue. The problem is modelled as an 

auction where advertisers submit bids for ad impressions, and 

the ad exchange selects a winning bid to display an ad on a 

website. The goal is to maximize the advertiser's revenue 

while considering the budget constraints and the uncertain 

outcomes of user click behaviour. 

The MDP is defined as a tuple ⟨𝑆, 𝐴, 𝑅, 𝑃, γ⟩, where 𝑆 is the 

state space, 𝐴 is the action space, 𝑅 is the reward function, 𝑃 

is the state transition probability function, and γ is the 

discount factor. The state space is defined as 𝑆 = 0,1,2, … , 𝑁, 

where 𝑁 is the maximum number of impressions that can be 

shown to users, and the state 𝑠𝑡 at time 𝑡 represents the 

number of ad impressions that have been shown so far. 

The action space 𝐴 is defined as the set of all possible bids 

that the advertiser can submit for an ad impression. The 

reward function 𝑅 is defined as 𝑅(𝑠𝑡 , 𝑎𝑡) = 𝑐𝑡 − 𝑎𝑡, where 𝑐𝑡 
is the expected revenue from a user clicking on the ad after 

seeing it, and 𝑎𝑡 is the bid submitted by the advertiser at time 

𝑡. The transition probability function 𝑃 is defined as the 

probability that a user clicks on the ad after seeing it, which 

is estimated based on historical data. 

The budget constraint is incorporated into the MDP by adding 

a penalty term to the reward function, which is defined as −∞ 

if the sum of the bids submitted so far exceeds the advertiser's 

budget or if the ad is not clicked. The objective is to find a 

bidding policy that maximizes the expected total reward over 

a finite time horizon. 

III. PROBLEM FORMULATION 

In the MDP formulation of RTB, let us consider a set of 

possible bids 𝐵 = 𝑏1, 𝑏2, … , 𝑏𝑛 that the agent can place for an 

ad impression. The agent's objective is to maximise its 

expected cumulative reward over a finite time horizon, given 

by: 

∑𝑟𝑡

𝑇

𝑡=1

 

where 𝑇 is the time horizon and 𝑟𝑡 is the reward obtained at 

time step 𝑡. The reward is defined as: 

{
𝑐𝑡 − 𝑏𝑡 , 𝑖𝑓 𝑡ℎ𝑒 𝑎𝑑 𝑖𝑠 𝑐𝑙𝑖𝑐𝑘𝑒𝑑
0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 

where 𝑐𝑡 is the click-through rate of the ad impression at time 

step 𝑡, and 𝑏𝑡 is the bid placed by the agent. The click-through 

rate is modeled as a function of the features of the ad 

impression, denoted by 𝑠𝑡: 

𝑐𝑡 = 𝑓(𝑠𝑡) 

The state of the environment is given by the features of the ad 

impression at time step 𝑡 denoted by 𝑠𝑡. The features can 

include information about the user, the website, the ad, and 

the context of the impression. The state evolves according to 

a probability distribution, denoted by 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑏𝑡), which 

depends on the bid placed by the agent. 

The agent's action is the bid placed for the ad impression, 

denoted by 𝑎𝑡. The action space is discrete and consists of the 

set of possible bids 𝐵. The agent selects its action based on a 

policy 𝜋(𝑎𝑡|𝑠𝑡), which is a probability distribution over the 

action space given the current state.  
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The policy is learned by the agent using reinforcement 

learning. Let us also introduce a budget constraint into the 

MDP formulation, which limits the total amount of money the 

agent can spend on bids over the time horizon. The budget 

constraint is given by: 

∑𝑏𝑡

𝑇

𝑡=1

≤ 𝐵0 

where 𝐵0 is the initial budget of the agent. The budget 

constraint is incorporated into the MDP by adding a penalty 

term to the reward function: 

𝑟𝑡  =  

{
 
 

 
 𝑐𝑡 − 𝑏𝑡 ,  𝑖𝑓 𝑡ℎ𝑒 𝑎𝑑 𝑖𝑠 𝑐𝑙𝑖𝑐𝑘𝑒𝑑 𝑎𝑛𝑑 ∑𝑏𝑖

𝑡−1

𝑖=1

≤ 𝐵0

−∞,  𝑖𝑓 𝑡ℎ𝑒 𝑎𝑑 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑙𝑖𝑐𝑘𝑒𝑑 𝑜𝑟∑𝑏𝑖

𝑡−1

𝑖=1

> 𝐵0

 

The penalty term ensures that the agent does not spend more 

than its budget over the time horizon. 

IV. PROBLEM SOLUTION 

 
Figure 1: Solution Methodology 

In this section, we delve into the details of the proposed Deep 

Landscape Forecasting (DLF) framework, which is a deep 

learning-based method that can forecast real-time bidding 

(RTB) advertising details using historical data. Figure 1 

shows the solution methodology followed in this paper. The 

goal of landscape forecasting is to predict the future state of 

the ad auction landscape, which includes the bids placed by 

ad buyers and the characteristics of the ad slots available for 

auction. The DLF framework is composed of four main 

components: feature extraction, temporal modeling, 

landscape forecasting, and loss function. The input data to the 

DLF framework is a sequence of historical ad auction 

landscapes, denoted as  {𝑿𝟏, 𝑿𝟐, … , 𝑿𝑻}, where each 𝑿𝒕 
represents the ad auction landscape at time 𝑡. 

A. Feature Extraction 

We first extract low-level features from each ad auction 

landscape using convolutional neural networks (CNNs), 

denoted as {𝑭𝟏, 𝑭𝟐, … , 𝑭𝑻}. The CNNs are trained to extract 

relevant information from the ad images, ad text, ad format, 

and ad placement. The output of each CNN is a feature map 

𝑭𝒕 ∈ 𝑅
𝐻×𝑊×𝐶, where 𝐻 and 𝑊 are the height and width of 

the feature map, respectively, and 𝐶 is the number of 

channels. Each channel corresponds to a specific feature of 

the ad auction landscape, such as the ad image quality, the ad 

text relevance, and the ad format popularity. 

B. Temporal Modeling 

Here we use a recurrent neural network (RNN) to model the 

temporal dependencies among the extracted features, denoted 

as {𝑯𝟏, 𝑯𝟐, … ,𝑯𝑻}. The RNN takes the sequence of feature 

maps {𝑭𝟏, 𝑭𝟐, … , 𝑭𝑻 as input and produces a sequence of 

hidden states {𝑯𝟏, 𝑯𝟐, … ,𝑯𝑻}. The RNN model is defined as 

follows: 

𝐡𝐭 = 𝑓(𝐅𝐭, 𝐡𝐭−𝟏), 

where 𝒉𝒕 ∈ 𝑅
𝐷 is the hidden state at time 𝑡, 𝐷 is the 

dimension of the hidden state, 𝑓 is a non-linear function such 

as the gated recurrent unit (GRU) or the long short-term 

memory (LSTM) unit, and 𝒉𝒕−𝟏 is the previous hidden state. 

C. Landscape Forecasting 

The main component of the DLF framework is the landscape 

forecasting module, which predicts the future state of the ad 

auction landscape based on the historical sequence of hidden 

states. The landscape forecasting module is implemented as a 

fully connected neural network, denoted as 𝑔, which takes the 

hidden state at each time step as input and produces a 

forecasted landscape 𝑿𝑡̂: 

𝐗𝑡̂   =  𝑔(𝐡𝐭). 

The landscape forecasting module can be trained using any 

standard supervised learning algorithm such as gradient 

descent or stochastic gradient descent. In this study, we have 

used stochastic gradient descent. The optimization of the 

objective function is performed using stochastic gradient 

descent with mini batches, which updates the parameters in 

each iteration as follows: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡∇𝜃𝑡𝐿(𝑦𝑖̂, 𝑦𝑖) − 𝜂𝑡𝜆∇𝜃𝑡𝛺(𝜃𝑡) 

where 𝜃𝑡 denotes the parameters at the 𝑡𝑡ℎ iteration, 𝐿(𝑦𝑖̂, 𝑦𝑖) 
denotes the loss function used to compute the error between 

the predicted and true values, 𝜂𝑡 denotes the learning rate at 

the 𝑡𝑡ℎ iteration, and ∇𝜃𝑡  denotes the gradient with respect to 

the parameters. 
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D. Loss Function 

We have used the mean squared error (MSE) loss as the 

objective function for training the DLF framework. The MSE 

loss measures the distance between the predicted ad auction 

landscape and the true ad auction landscape. Formally, the 

MSE loss is defined as follows: 

ℒ({𝐗𝟏, 𝐗𝟐, … , 𝐗𝐓}, {𝐗1̂, 𝐗2̂, … , 𝐗 𝑇̂}) =
1

𝑇
∑|𝐗𝐭

𝑇

𝑡=1

− 𝐗𝑡̂|2
2, 

where 𝑿𝒕 and  𝑿𝑡̂ denote the actual and predicted values, 

respectively, at time step 𝑡. | ⋅ |2 is the 𝐿2 norm that measures 

the Euclidean distance between the actual and predicted 

values. The objective function is optimized using stochastic 

gradient descent with mini-batch training. In addition to the 

MSE loss, the authors also introduce a regularization term to 

prevent overfitting and improve generalization performance. 

The regularization term is defined as the sum of the Frobenius 

norm of the weights of the convolutional and fully connected 

neural networks. The total loss function is then defined as 

follows: 

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ + 𝜆1 ∑ |𝐖𝑙

𝑙∈𝑐𝑜𝑛𝑣

|𝐹
2 + 𝜆2 ∑ |𝐖𝑙

𝑙∈𝑓𝑐

|𝐹
2 , 

where 𝜆1 and 𝜆2 are regularization coefficients, 𝑐𝑜𝑛𝑣 and 𝑓𝑐 

are the set of layers in the convolutional and fully connected 

neural networks, respectively, and | ⋅ |𝐹 denotes the 

Frobenius norm. 

E. Bid Optimization 

Here we propose a dynamic programming approach for 

solving the optimal bidding problem in real-time bidding 

advertising. The problem is modelled as a Markov Decision 

Process (MDP) where at each auction, the advertiser selects a 

bid value that maximizes the expected total reward over a 

finite horizon. The state of the MDP is defined as the 

remaining budget and the number of remaining auctions, and 

the action is the bid value. The transition probabilities are 

defined as the probability of winning the auction given the 

bid value and the previous state. We use dynamic 

programming to solve this MDP by computing the optimal 

value function and the optimal policy. The value function is 

defined as the expected total reward starting from a given 

state and following the optimal policy. We will use a 

recursive formulation for the value function using the 

Bellman equation: 

𝑉∗(𝑏, 𝑡) = max
𝑥∈[0,𝑏]

{ 𝑟(𝑥, 𝑏, 𝑡)

+∑ ∑ 𝑝(𝑤|𝑥, 𝑏, 𝑡)𝑃𝑤,𝑠𝑉
∗(𝑏 − 𝑥, 𝑡

𝑤∈{0,1}

∞

𝑠=0

− 1 + 𝑠)} 

where 𝑉∗(𝑏, 𝑡) is the optimal value function, 𝑏 is the 

remaining budget, 𝑡 is the remaining number of auctions, 𝑥 is 

the bid value, 𝑟(𝑥, 𝑏, 𝑡) is the immediate reward of bidding 𝑥 

at time 𝑡 given the remaining budget 𝑏, 𝑝(𝑤 | 𝑥, 𝑏, 𝑡) is the 

probability of winning the auction given the bid value 𝑥, the 

remaining budget 𝑏, and the remaining number of auctions 

𝑡, 𝑃𝑤,𝑠 is the probability of transitioning from time 𝑡 to time 

𝑡 + 1 with 𝑤 indicating whether the advertiser wins the 

auction and 𝑠 indicating the number of auctions elapsed in 

between, and 𝑉∗(𝑏 − 𝑥, 𝑡 − 1 + 𝑠) is the optimal value 

function at time 𝑡 − 1 + 𝑠 given that the advertiser wins the 

auction with probability 𝑤. 
The optimal policy is then obtained by selecting the bid value 

that maximizes the value function at each state. The authors 

also propose a bid adjustment technique to ensure that the 

budget constraint is satisfied at each step. The dynamic 

programming approach provides an exact solution to the 

optimal bidding problem but is computationally expensive, 

especially when the number of auctions is large. To address 

this, a modified algorithm that uses a truncated value function 

and an approximate policy is used. The truncated value 

function only considers a finite number of future auctions, 

and the approximate policy selects the bid value that 

maximizes the truncated value function. This modified 

algorithm has a similar performance to the exact algorithm 

but with much lower computational complexity. Overall, the 

dynamic programming solution proposed in this section 

provides a rigorous and exact approach for solving the 

optimal bidding problem in real-time bidding advertising, and 

the modified algorithm offers a computationally efficient 

alternative. 

V. RESULTS AND DISCUSSIONS 

A. Auction Market Price PDF Prediction 

The auction details used to optimize the bidding price of an 

auction is predicted using Deep Landscape Forecasting 

(DLF). The probability density function of the market price 

is predicted using DLF and other six algorithms for 

comparison. The comparison id sone using Area Under the 

Curve (AUC), Logarithmic Loss (Log Loss), and Averaged 

Negative Log Probability (ANLP). AUC is the area under the 

Receiver Operating Characteristic (ROC) curve, which 

compares the True Positive Rate (TPR) to the False Positive 

Rate (FPR) at different classification thresholds. The AUC 

score ranges from 0 to 1, with greater values representing 

superior performance. Log Loss evaluates the performance of 

a model that produces probabilities by calculating the 

logarithm of the predicted probability of each class and 

summing these values for each observation in the test set. A 

lower Log Loss value indicates a more accurate model 

prediction. The average negative logarithm of the model's 

predicted probabilities for the correct class label is measured 

by ANLP. The model's performance is superior the lower the 

value of the metric. This metric is frequently applied to multi-

class classification problems in which the model predicts the 

probabilities for each class and the class with the highest 

probability is selected as the predicted class. Table-1 shows 

the comparative analysis for the below discussed methods for 

2259 campaign id. 
 

Kaplan-Meier (KM) estimator is a non-parametric statistic 

used to estimate the probability of an event occurring over 

time, such as a click or a conversion in real-time bidding. In 

survival analysis, it is frequently used to estimate the survival 

function. 
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 In real-time bidding for display advertisements, the Kaplan-

Meier estimator can be used to predict the market price by 

estimating the probability of winning an auction at various 

bid levels, taking into consideration competing bidders' 

maximum bids. 

Gamma distribution-based regression model utilises ad 

position, advertiser, and user information to estimate the 

winning price's probability density function. The estimated 

density function is then fitted with a gamma distribution to 

predict the winning price. It represents the non-negative and 

asymmetrical characteristics of the auction bidding data. This 

model outperforms commonly employed regression models 

in terms of accuracy of prediction. 

Lasso-Cox model is a form of survival analysis used to 

predict market prices in real-time bidding. It combines Cox's 

proportional hazards model, which predicts the time to an 

event, with Lasso regularisation, which identifies the most 

influential factors. The Adaptive Lasso algorithm is used to 

estimate the regression coefficients of the Cox model, 

allowing for automatic variable selection, and thereby 

enhancing the accuracy of prediction. 

DeepHit models the joint distribution of time-to-event and 

event type and learns the mapping between input features and 

distribution parameters using neural networks. It has been 

demonstrated that the method outperforms traditional 

survival analysis models and has the potential to enhance 

real-time bidding strategy. 

Deep Weighted Poisson Regression (DWPP) estimates the 

market price by combining a Poisson regression model with 

a neural network. The model addresses the issue of censoring 

using a weighted loss function and predicts the market price 

based on the input features. On multiple datasets, the method 

outperforms conventional regression models in terms of 

accuracy and efficiency. 

Recurrent neural network (RNN) can capture the 

sequential character of bidding logs and can deal with 

sequences of variable length. The model uses historical 

bidding data to identify user behaviour patterns and predict 

the probability of obtaining a specific ad impression. This 

output is then fed back into the network for the subsequent 

time phase, enabling the network to make predictions based 

on the entire sequence. The RNN's internal memory enables 

it to recognise temporal dependencies in the data, making it 

an effective instrument for sequence modelling and 

prediction tasks. 

Table 1: Comparative study of market price PDF 

prediction for 2259 campaign 

Algorithm AUC Log Loss ANLP 

KM 0.680657 0.605585 14.81688 

Gamma 0.514198 0.965122 7.939018 

Cox 0.686271 0.887812 37.55281 

Deep Hit 0.689456 0.555907 5.764985 

DWPP 0.702326 14.75364 41.49198 

RNN 0.738268 0.791281 9.625792 

DLF 0.838920 0.876278 5.244639 

B. Campaign Bidding Price Optimization 

The evaluation of the previously discussed algorithm for bid 

optimisation is conducted from the advertiser's campaign 

budget and lifespan (episode length) perspective. This 

algorithm is contrasted with five other algorithms discussed 

below. The comparative analysis outcomes are presented in 

Table-2. The parameters used for the model training are: 𝑁 =
1000, 𝑐0 = 1/16. 

Sponsored Search Markov Decision Process (SSMDP) is 

a bidding strategy used for display advertising real-time 

bargaining. This approach represents the bidding problem as 

a Markov Decision Process, which can be solved using 

techniques from dynamic programming to determine the 

optimal bidding policy. The SSMDP method considers the 

click-through rate, conversion rate, and cost per click when 

determining the optimal bid to maximise the advertiser's 

anticipated revenue. 

Maximum Cost Per Click (MCPC) is a common real-time 

bidding strategy for display advertisements. In this strategy, 

the advertiser sets a maximum bid limit for each ad 

impression, representing the most they are prepared to pay for 

a click. The winning offer is then determined based on the 

maximum CPC bid and the ad's click-through rate (CTR). 

This strategy enables advertisers to control their expenditures 

and ensures that they only pay for clicks on their 

advertisements up to their maximum CPC bid. 

Linear Bidding (LB) is a frequently employed method for 

display advertisements. It entails estimating the value of a 

user impression based on the characteristics of the 

advertisement and the user, and then bidding a proportional 

amount. The optimal proposal is determined by balancing the 

anticipated revenue from the advertisement with the cost of 

its display. This strategy is easy to implement and can be 

effective in many situations, but it may not be optimal in more 

complex circumstances. 

Constrained Markov Decision Process (CMDP) is a 

bidding strategy utilised in display advertising real-time 

bargaining. It is an extension of the standard MDP that 

permits the incorporation of state space constraints. The 

CMDP framework is intended to allow advertisers to 

maximise profits while adhering to budgetary and other 

constraints. This strategy is especially useful for advertisers 

with limited budgets, as it allows them to control their 

spending while optimising their bids. By incorporating 

constraints into the MDP framework, the CMDP approach 

provides advertisers seeking to maximise return on 

investment in real-time bidding for display advertising with a 

powerful and adaptable instrument. 

Batch Constrained Markov Decision Process (BCMDP) is 

a bidding strategy used in real-time bidding for display 

advertisements to determine the optimal proposal. It is based 

on the Constrained Markov Decision Process (CMDP) and 

considers advertisers' budget constraints. In BCMDP, a group 

of auctions are evaluated concurrently, and a set of constraints 

are formulated for the group. Solving the CMDP problem 

under the provided constraints determines the optimal bid for 

each auction. The resulting bids are then distributed based on 

a predetermined allocation formula, such as the VCG 

mechanism.  
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It has been demonstrated that the BCMDP strategy can significantly increase advertisers' expected revenue while adhering to 

budgetary constraints. 

Table 2: Comparative analysis for bid optimization 

Campaign Algorithm Objective Auction Impression Clicks Cost Win Rate CPM E-CPC 

1458 

SSMDP 20 350000 82043 20 1500065 23.44% 18.28 75.00 

MCPC 218 350000 51853 218 1388007 14.82% 26.77 6.37 

LB 255 350000 48009 255 1160457 13.72% 24.17 4.55 

RLB 272 350000 45429 272 1406711 12.98% 30.97 5.17 

CMDP 466 350000 89162 466 2536626 14.51% 28.45 5.44 

BCMDP 462 350000 108651 462 2515175 17.68% 23.15 5.44 

2259 

SSMDP 11 350000 92391 11 2024398 26.40% 21.91 184.04 

MCPC 9 350000 38003 9 2035388 10.86% 53.56 226.15 

LB 14 350000 46743 14 2035330 13.36% 43.54 145.38 

RLB 18 350000 67731 18 2016836 19.35% 29.78 112.05 

CMDP 22 350000 83757 22 2378214 20.08% 28.39 108.10 

BCMDP 19 350000 81593 19 2302661 19.56% 28.22 121.19 

2261 

SSMDP 16 343862 121913 16 1921384 35.45% 15.76 120.09 

MCPC 12 343862 46272 12 1926368 13.46% 41.63 160.53 

LB 17 343862 83772 17 1739679 24.36% 20.77 102.33 

RLB 17 343862 88878 17 1923796 25.85% 21.65 113.16 

CMDP 15 343862 83284 15 1925641 24.22% 23.12 128.38 

BCMDP 17 343862 84764 17 1925641 24.65% 22.72 113.27 

2821 

SSMDP 30 350000 91672 30 1937519 26.19% 21.14 64.58 

MCPC 23 350000 41090 23 1952973 11.74% 47.53 84.91 

LB 31 350000 56528 31 1495739 16.15% 26.46 48.25 

RLB 36 350000 71847 36 1937604 20.53% 26.97 53.82 

CMDP 65 350000 145906 65 3693887 22.04% 25.32 56.83 

BCMDP 55 350000 116136 55 3693887 17.54% 31.81 67.16 

2997 

SSMDP 115 156063 58866 115 613597 37.72% 10.42 5.34 

MCPC 82 156063 29034 82 614884 18.60% 21.18 7.50 

LB 77 156063 38978 77 270386 24.98% 6.94 3.51 

RLB 119 156063 57267 119 609392 36.69% 10.64 5.12 

CMDP 97 156063 49298 97 411088 31.59% 8.34 4.24 

BCMDP 102 156063 50266 102 428397 32.21% 8.52 4.20 

3358 

SSMDP 15 300928 52674 15 1722296 17.50% 32.70 114.82 

MCPC 144 300928 23633 144 1699557 7.85% 71.91 11.80 

LB 213 300928 16061 213 999776 5.34% 62.25 4.69 

RLB 219 300928 24182 219 1683775 8.04% 69.63 7.69 

CMDP 223 300928 53850 223 1438932 6.73% 26.72 6.45 

BCMDP 201 300928 54361 201 1439570 7.62% 26.48 7.16 

3386 

SSMDP 20 350000 80085 20 1673629 22.88% 20.90 83.68 

MCPC 35 350000 34657 35 1681835 9.90% 48.53 48.05 

LB 56 350000 41952 56 1555576 11.99% 37.08 27.78 

RLB 65 350000 46871 65 1670203 13.39% 35.63 25.70 

CMDP 72 350000 79660 72 1574648 12.04% 19.77 21.87 

BCMDP 64 350000 81302 64 1571482 12.69% 19.33 24.55 
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3427 

SSMDP 11 350000 79358 11 1763480 22.67% 22.22 160.32 

MCPC 91 350000 37213 91 1761734 10.63% 47.34 19.36 

LB 170 350000 31432 170 1378162 8.98% 43.85 8.11 

RLB 191 350000 37648 191 1711180 10.76% 45.45 8.96 

CMDP 203 350000 80480 203 1759063 9.04% 21.86 8.67 

BCMDP 195 350000 82125 195 1752960 11.72% 21.35 8.99 

3476 

SSMDP 24 350000 77240 24 1724007 22.07% 22.32 71.83 

MCPC 67 350000 30776 67 1731727 8.79% 56.27 25.85 

LB 146 350000 20877 146 1039774 5.96% 49.80 7.12 

RLB 139 350000 33466 139 1710701 9.56% 51.12 12.31 

CMDP 136 350000 67558 136 1963504 7.93% 29.06 14.44 

BCMDP 143 350000 78790 143 1963257 7.15% 24.92 13.73 

VI. CONCLUSION  

The combination of deep learning and reinforcement learning 

has shown great promise for enhancing the efficacy and 

precision of real-time bidding in display advertising. Deep 

neural networks, specifically recurrent neural networks, 

enable accurate modelling and forecasting of market prices, 

whereas reinforcement learning enables adaptive and 

dynamic pricing strategies in response to changing market 

conditions. Moreover, the incorporation of contextual 

information, such as user behaviour and ad attributes, has 

proven effective for enhancing bidding performance. 

Nevertheless, there are still obstacles to surmount, such as the 

complexity and computational costs of deep learning models 

and the need for more advanced contextual information 

extraction and processing techniques. Notwithstanding, these 

research efforts have paved the way for further investigation 

and development of real-time advertising systems that can 

more effectively leverage the power of deep learning and 

reinforcement learning to optimise ad placements and 

increase revenue for advertisers and publishers. 
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